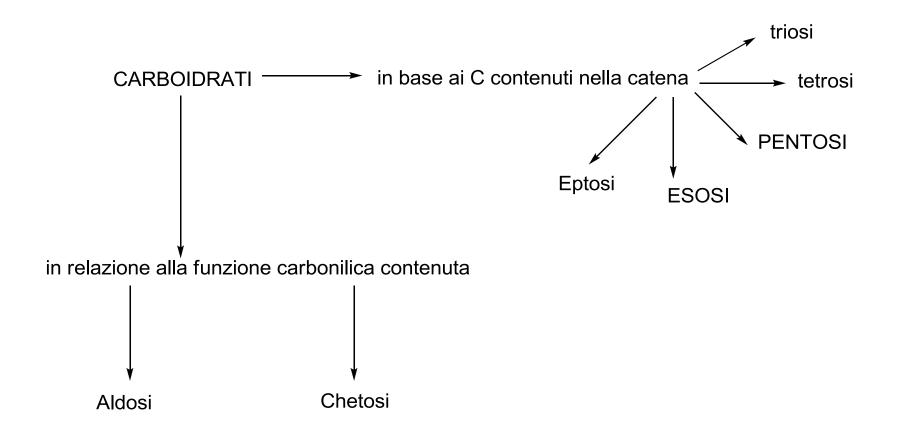

Carboidrati

Per garantine la privacy, il download automatico di questa immagine è stato bioccato da PowerPoint.

Definiti **poliidrossialdeidi o poliidrossichetoni**, i carboidrati hanno formula generale Cn(H₂O)m.


Possono esistere come **monosaccaridi** (zuccheri semplici) di formula Cn(H₂O)n, **disaccaridi**, **oligosaccaridi o polisaccaridi**.

Il glucosio è il più abbondante in natura e viene generato dalle piante a partire da anidride carbonica, acqua ed energia solare

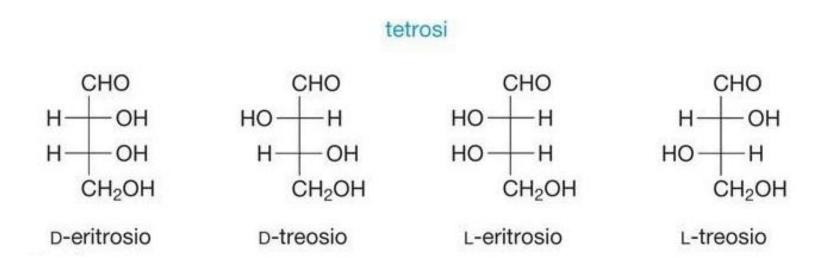
$$6 \text{ CO}_2 + 6 \text{ H}_2\text{O} + \text{energia} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6$$

Esempi di polimeri di glucosio: l'amido e la cellulosa

Classificazione dei carboidrati

ALDOSI:

Contengono un gruppo funzionale aldeidico


La **gliceraldeide** è la poliidrossialdeide più piccola Si può definire **aldotrioso**

gliceraldeide

D se l'OH legato allo stereocentro più lontano dal carbonile si trova a **dx**, in proiezione di Fisher

L se l'OH legato allo stereocentro più lontano dal carbonile si trova a **sx**, in proiezione di Fisher

Se alla **gliceraldeide** (trioso) si aggiunge **un altro atomo** di C, per allungare la catena, si ottengono i **tetrosi**, aventi **2 stereocentri** (da cui 2²stereoisomeri).

Treosio se i due OH sono da parti opposte **Eritrosio** se i due OH sono dalla stessa parte.

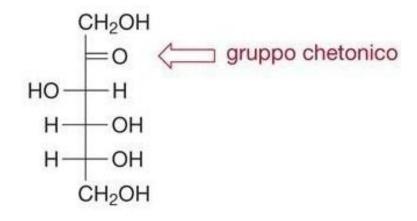
CHETOSI

Contengono un gruppo funzionale chetonico

1,3-diidrossiacetone

L'1,3-diidrossiacetone, è il primo della serie dei chetosi ed è l'unico carboidrato privo di centri stereogenici.

Gli altri chetosi, eritrulosio, xilulosio e ribulosio hanno nomi derivati direttamente dai rispettivi aldosi con la desinenza -osio cambiata in -ulosio.


Nei chetosi, il gruppo carbonilico si trova generalmente in posizione 2. Quando è in un'altra posizione è necessario specificarlo nella nomenclatura

ES.

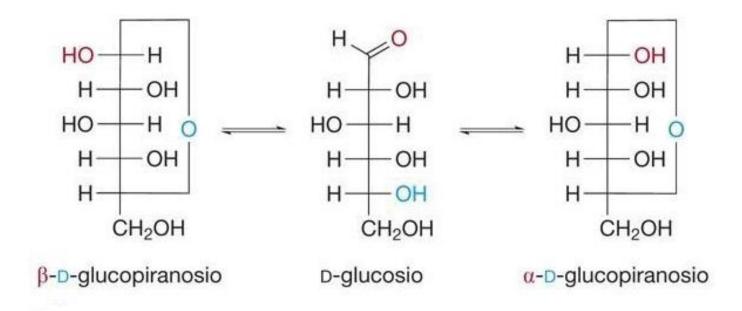
p-riboesa-3-ulosio

D perché l'OH dell'ultimo stereocentro è a dx 3 perché il C=O è in posizione 3 Ulosio perché è un chetoso Riboesa perché la sequenza degli OH è quella de ribosio (v.aldoesosi)

Il fruttosio è un chetoso.

D-arabinoesulosio (fruttosio)

Strutture cicliche dei monosaccaridi


I monosaccaridi esistono in forma ciclica, perché avendo contemporaneamente un gruppo aldeidico e alcolico nella stessa molecola possono formare un **emiacetale ciclico**, per condensazione intramolecolare.

Formazione emiacetale:

$$R-C$$
 + $R'-OH$ \longrightarrow $R-C-O-R'$ aldeide alcol semiacetale

GLUCOSIO:

- Ciclizzazione tra il C5 e C1
- •Si genera un nuovo centro chirale al C1 (il carbonile è un centro prochirale)
- •Si instaura un equilibrio dinamico tra la forma aperta e le due strutture cicliche

Osservazione

Tutti e cinque gli ossidrili potrebbero sommarsi al gruppo carbonilico per formare emiacetali ciclici di diversa grandezza.

Risulta preferita la formazione di un anello

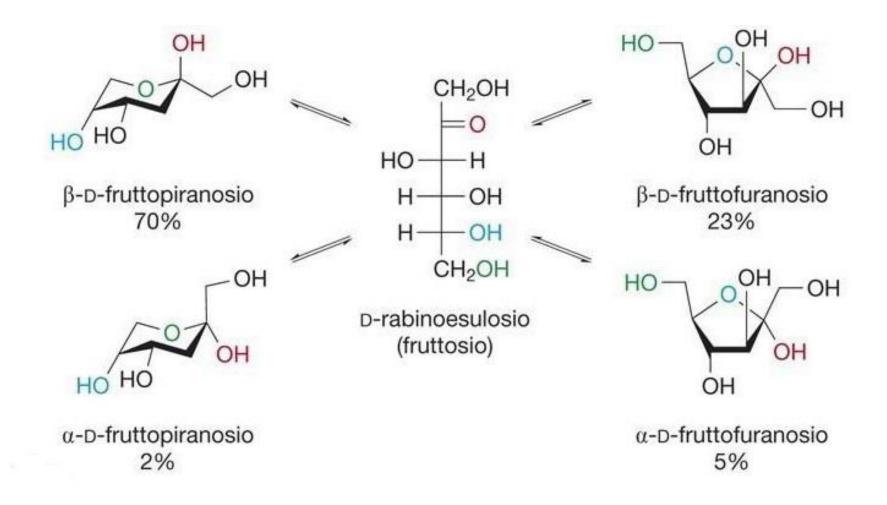
• a sei atomi, chiamato **piranosio**, (dal pirano, un etere ciclico)

Pirano

• a cinque atomi chiamato **furanosio**, dal furano.

Furano

In generale:


Il carboidrato (glico)

- la cui struttura è formata da un anello a <u>5</u>
 termini, viene definito <u>glicofuranosio</u>
- La cui struttura è formata da un anello a <u>6</u> termini, viene definito <u>glicopiranosio</u>

Per es., nel caso del <u>glucosio</u> (<u>aldoesoso</u>), la ciclizzazione può dare origine sia ad una struttura furanosica che piranosica (anche se in natura è presente prevalentemente in forma piranosica)

Gluco deriva da glucosio

Anche il fruttosio (chetoso) può ciclizzare in forma piranosica o furanosica

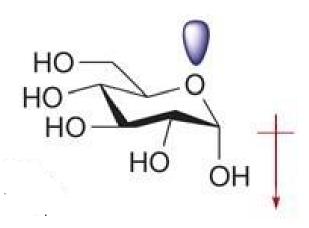


Il fruttosio è presente all'equilibrio sia in forma piranosica che furanosica

$$\begin{array}{c} \mathsf{CH_2OH} \\ \mathsf{HO} \\ \mathsf{HO} \\ \mathsf{H} \\ \mathsf{OH} \\ \mathsf{CH_2OH} \\ \mathsf{D} \text{ (-) fruttosio} \end{array} \\ \begin{array}{c} \mathsf{Nuovo \ centro \ asimmetrico} \\ \mathsf{HOCH_2OH} \\ \mathsf{OH} \\$$

Le strutture piranosiche possono essere rappresentate in più modi:

- Conformazione a sedia (v. cicloesano), in cui i sostituenti sono assiali o equatoriali
- Proiezione di Haworth, in cui i sostituenti sono cis o trans
- Rappresentazione a cuneo e tratteggio, per evidenziare la stereochimica



Configurazione anomerica α e β

- Nella ciclizzazione intramolecolare di uno zucchero il C1 (C carbonilico) diventa uno stereocentro e prende il nome di <u>carbonio</u> <u>anomerico</u>
- I due stereoisomeri che si generano vengono definiti $\underline{anomero} \ \alpha$ e $\underline{anomero} \ \beta$
- <u>L'anomero</u> α e l'<u>anomero</u> β sono tra loro diastereoisomeri

Effetto anomerico

L' <u>effetto anomerico</u> è quell'effetto che giustifica la presenza dell'anomero α del D-glucosio, per <u>stabilizzazione elettronica</u>, in quanto i dipoli dovuti al sostituente elettronegativo sul C anomerico e al doppietto sull'O sono opposti.

Mutarotazione

E' la variazione del potere ottico rotatorio di uno zucchero in soluzione, dovuta all'equilibrio dinamico che si instaura tra la forma aperta e i due anomeri α e β .

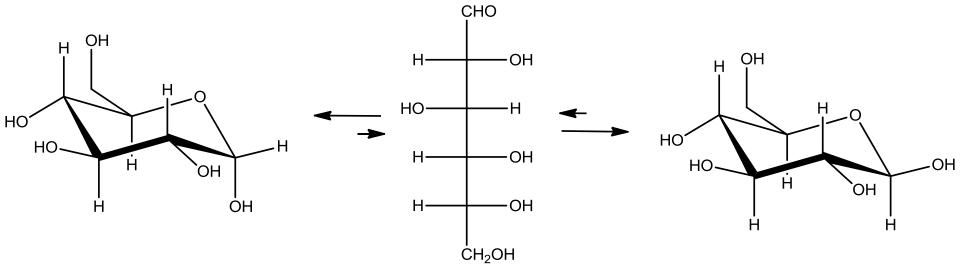
Esempio:

Quando si prepara una soluzione di glucosio, in realtà si scioglie un solo anomero. Si parte dal solubilizzare in acqua l' α -D glucopiranosio puro, che ha un suo potere rotatorio specifico di +112°. Via Via il potere rotatorio cambia fino a stabilizzarsi ad un valore di +53°

```
\alpha– D- glucopiranosio [\alpha]= +112° misurato con polarimetro
```

$$β$$
– D- glucopiranosio [$α$]= +19° misurato con polarimetro

$$\alpha$$
 e β all'equilibrio [α]= +53°


Avendo questi valori e impostando un' equazione è possibile ricavare la % di anomero α e di anomero β

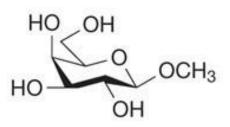
53=
$$(112 \times \% \alpha/100) + (19 \times \% \beta/100)$$

% $\alpha + \% \beta = 100$

Si risolve l'equazione in funzione di % α e di % β , da cui:

anomero
$$\alpha$$
 = 36% anomero β = 64%

N.B. Se si effettua lo stesso esperimento in catalisi acida, l'equilibrio viene raggiunto più velocemente


 $\alpha\text{-D-(+)-}Glucopiranosio$ [α] $_D$ =112 $^\circ$

36,4%

 β -D-(+)-Glucopiranosio [α]_D=18,7° 63,6%

REAZIONI

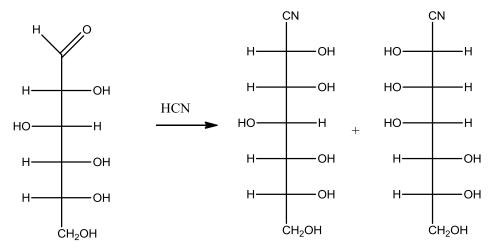
1) Formazione di glicosidi

- Un carboidrato può reagire con un alcol al suo C anomerico, formando un acetale.
- La struttura che si genera viene definita glicoside e il legame che si instaura tra lo zucchero e l'alcol si chiama legame glicosidico
- La parte non zuccherina di un glicoside si chiama aglicone

Per attribuire il nome a un glicoside, in genere si considera l'alcol come sostituente dello zucchero che prenderà il suffisso -side

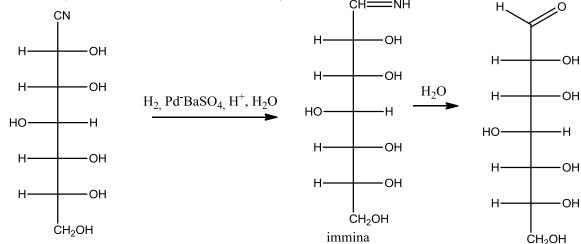
metil β-D-galattopiranoside

Se l'aglicone è rappresentato da un alcol complesso, lo zucchero viene considerato sostituente dell'aglicone, attribuendogli il suffisso -il


β-D-glucopiranosil colesterolo o colesteril β-D-glucopiranoside

Meccanismo della glicosazione: in eccesso di alcol (in eccesso di acqua si ha l'idrolisi del legame acetalico)

I glicosidi non mostrano mutarotazione in assenza di acidi, danno saggi negativi con i reagenti di Fehling e Tollens (sono zuccheri non riducenti) e sono indifferenti ai reagenti che attaccano il carbonile.


Allungamento della catena: sintesi di Kiliani-Fisher

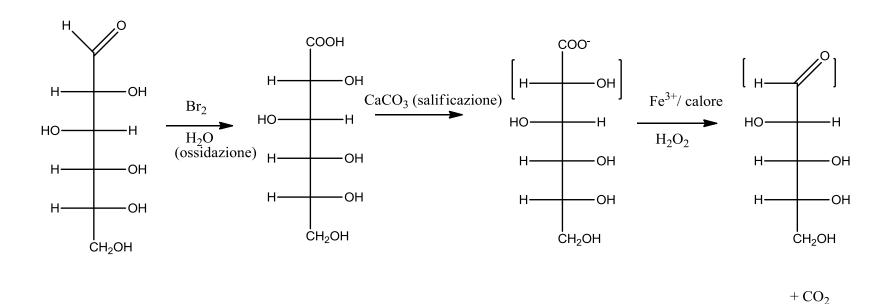
Stadio 1: formazione cianidrina

diastereoisomeri

Stadio 2: riduzione e idrolisi (si considera un solo diastereoisomero)

Accorciamento della catena: Degradazione di Wohl

1° stadio: formazione di un'ossima

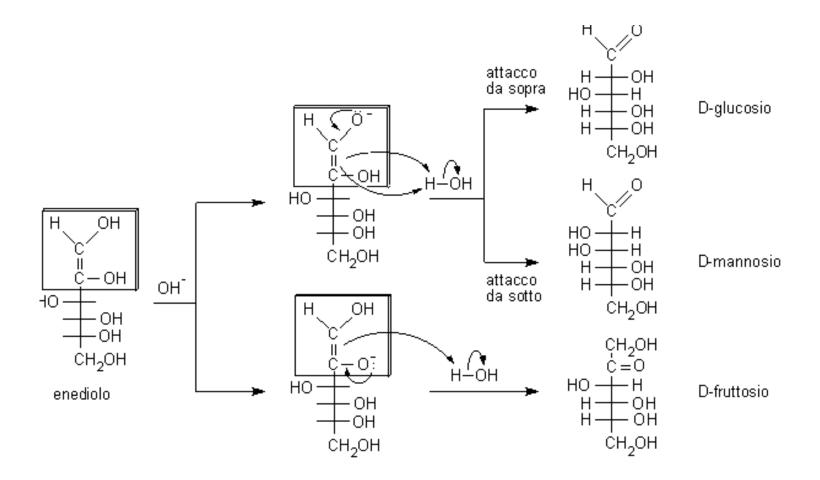

2° stadio: acetilazione e disidratazione dell'ossima a nitrile

3° stadio: deprotezione e decomposizione della cianidrina

$$C \equiv N$$
 $H \rightarrow OAC$
 $ACO \rightarrow H$
 $C \equiv N$
 $C \equiv N$

Gli esteri acetici presenti sulla cianidrina acetilata si devono **idrolizzare** in ambiente basico **anidro** per evitare la contemporanea idrolisi del nitrile che avverrebbe facilmente in ambiente acquoso. La **cianidrina** ottenuta **non è stabile in ambiente basico** e tende ad eliminare il gruppo CN-, utilizzando Ag₂O, sotto forma di precipitato bianco di AgCN.

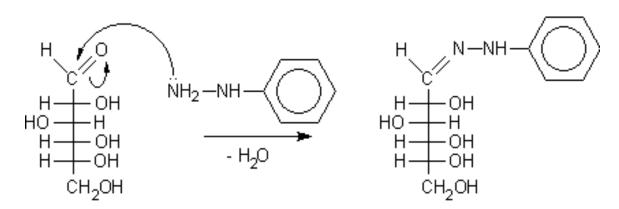
Accorciamento di catena: Degradazione di RUFF


Isomerizzazione alcalina

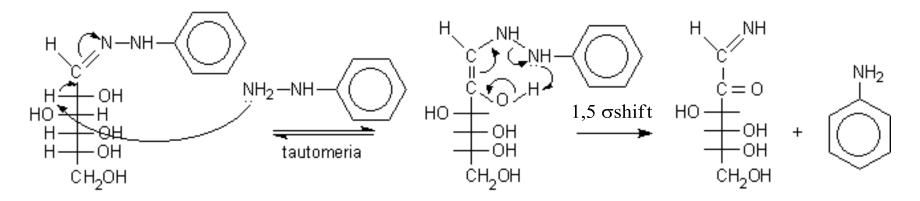
Gli aldosi e chetosi trattati con basi forti subiscono isomerizzazione e danno una miscela di isomeri

D-glucopiranosio

D-glucosio (forma aperta)


enediolo

nell'enediolo si perde la stereochimica del C-2 tipica per cui si può formare uno qualunque dei tre composti idrossicarbonilici possibili: **D-glucosio, D-mannosio e D-fruttosio**. Se il carbonile si forma sul C-2 si ottiene fruttosio, se il carbonile si forma sul C-1 si può ottenere glucosio o mannosio perché l'H+ si può legare sopra o sotto il piano molecolare sp2 dell'enediolo.


Formazione di osazoni:

L'osazone o difenilidrazone è un solido cristallino poco solubile in acqua con un punto di fusione caratteristico. Si ottiene facendo reagire un monosaccaride a 100°C con un eccesso di fenilidrazina.

D-glucosio, forma aldeidica

fenilidrazone del D-glucosio

fenilidrazone

intermedio simile all'enediolo

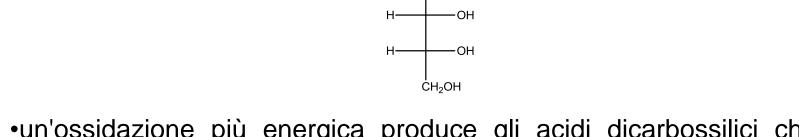
HOHOUTH + 2 NH2-NH

OH CH₂OH

OSAZONE

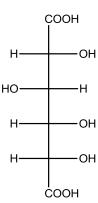
$$\begin{array}{c}
H^{+} \\
C = N - NH - OH \\
C = N - NH - OH \\
CH2OH

OSAZONE$$


L'uso principale degli osazoni è l'identificazione dei monosaccaridi di partenza

Inconveniente: il centro asimmetrico sul C-2 dello zucchero originale viene perduto quindi due aldosi epimeri sul C-2, come D-glucosio e D-mannosio, danno lo stesso osazone, con punto di fusione 205 °C.

Anche un chetoesoso, il fruttosio, dà lo stesso osazone di glucosio e mannosio.


Ossidazione

- •L'ossidazione degli zuccheri può essere condotta sia in ambiente basico che in ambiente acido.
- l'ossidazione in ambiente alcalino è utilizzata solo per scopi analitici, quella in ambiente acido è utilizzata sia a scopo analitico che preparativo.
- •Una blanda ossidazione degli aldosi produce i corrispondenti acidi carbossilici chiamati **acidi gliconici**;

но——н

•un'ossidazione più energica produce gli acidi dicarbossilici chiamati **acidi glicarici**.

Reattivo di Fehling.

E' composto da due soluzioni: A contenente CuSO₄ e B contenente tartrato di sodio ed NaOH. Il tartrato ha la funzione di complessare il Cu2+ che altrimenti precipiterebbe come idrossido. La specie ossidante è il Cu2+ che si riduce a Cu+ e precipita come Cu₂O

Reattivo di Benedict. E' identico al Fehling con la differenza che usa lo ione citrato al posto del tartrato

Reattivo di Tollens. E' composto da una soluzione ammoniacale di AgNO3 che contiene il complesso Ag(NH3)2+. La specie ossidante è lo ione Ag+ che precipita come Ag metallico

Uno zucchero che reagisce positivamente a questi saggi viene definito zucchero riducente.

Gli aldosi e i chetosi vengono ossidati anche se sono impegnati nel **legame semiacetalico**

Gli zuccheri impegnati in **legami acetalici** (glicosidici) non reagiscono e, quindi, sono **zuccheri non riducenti** perché gli acetali sono stabili alle basi e non liberano l'aldeide o il chetone.

Gli **alfa-idrossichetoni**, possono subire l'ossidazione in ambiente basico perché subiscono isomerizzazione. Per es. il fruttosio prima viene isomerizzato a glucosio e mannosio e poi, sotto questa forma, può essere ossidato ad acido gluconico e mannonico.

Ossidazione in ambiente acido con Br₂

Gli acidi gliconici possono essere preparati per ossidazione dei corrispondenti aldosi con acqua di bromo a pH 5. In queste condizioni i chetosi come il fruttosio non reagiscono dato che non c'è isomerizzazione.

Vantaggio:

la reazione con acqua di bromo permette di distinguere gli aldosi dai chetosi.

Ossidazione in ambiente acido con HNO₃

Ossidanti più forti, come HNO3 diluito caldo, ossidano, oltre al gruppo aldeidico, anche il gruppo ossidrilico primario.

Gli aldosi vengono ossidati ad acidi dicarbossilici chiamati acidi glicarici.

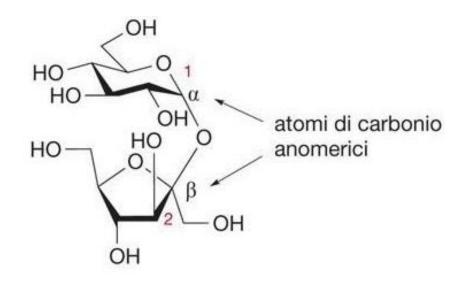
Ossidazione con HIO₄

permette di distinguere un aldoso da un chetoso (dai diversi frammenti che si ottengono)

Nel caso di un aldoso:

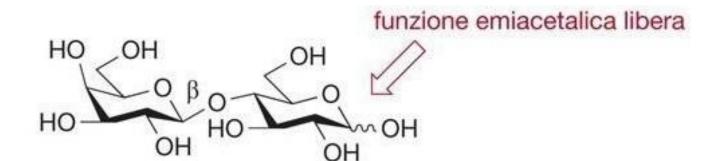
ĊH₂OH

Nel caso di un chetoso:

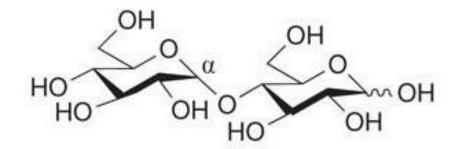

H OH HO OH HIO₄ HCOOH + 2 HCOH +
$$CH_2OH$$
 CH₂OH H_2OH CH₂OH H_2OH CH₂OH H_2OH CH₂OH

DISACCARIDI:

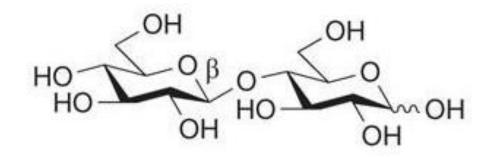
sono dati dall'unione di 2 monosaccaridi tramite legame glicosidico


- Saccarosio
- Lattosio
- Maltosio
- Cellobiosio

Saccarosio


 $saccarosio \\ 2-O-(\alpha-D-glucopiranosil)-\beta-D-fruttofuranoside$

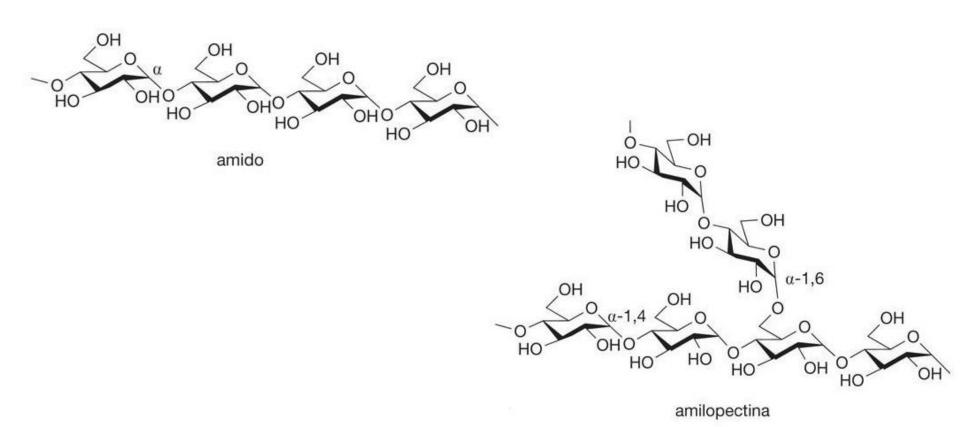
Lattosio


lattosio 4-O-(β-D-galattopiranosil)-D-glucopiranosio

Maltosio

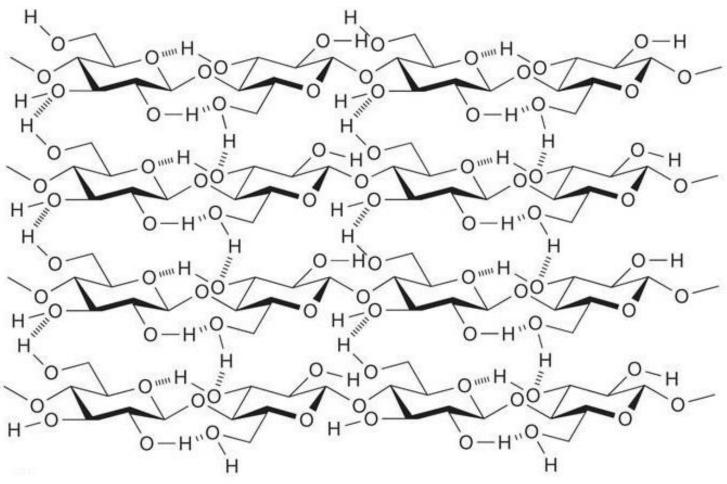
maltosio 4-O-(α-D-glucopiranosio)-D-glucopiranosio

Cellobiosio

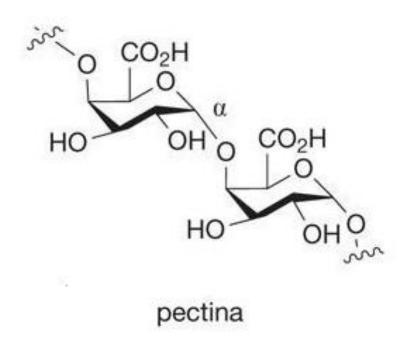

cellobiosio 4-O-(β-D-glucopiranosio)-D-glucopiranosio

POLISACCARIDI dati dall'unione di puù monosaccaridi

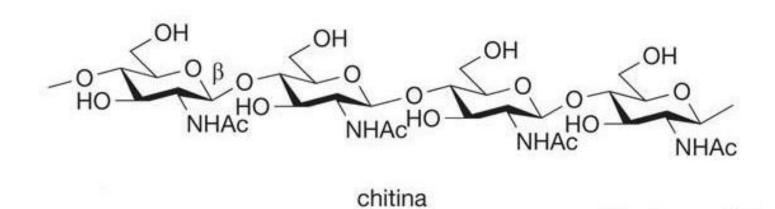
- Amido
- Cellulosa
- Pectina
- Chitina


Amido

Le ramificazioni dell'amilopectina traggono origine dal legame tra il C6 di un'unità di glucosio e il C1 di un'altra unità e si presentano a intervalli di 20-25 unità di glucosio


Cellulosa

tende a disporsi su di un piano, formando differenti strati impaccati uniti da legami a idrogeno


Pectina

è un polisaccaride costituito da 400-1.000 unità di acido galatturonico legate con un legame α -1,4-glicosidico

Chitina

è un polisaccaride, costituito da unità di *N*-acetilglucosammina unite da un legame β-1,4-glicosidico

